Respostas

2013-03-25T22:10:08-03:00

∩ B U C = A ∩ B U A ∩ C

 

A = { 2, 4, 10 }, B = { 2, 4, 6 } e C = { 2, 6, 10}

 

∩ B = { 2, 4 } U C = { 2, 4, 6, 10 }

A ∩ B = { 2, 4 } U A = { 2, 4, 10} ∩ C = { 2, 4, 6, 10}

 

Com esses elementos, a afirmação é verdadeira.

Ou seja, todos os conjuntos precisam ter algum elemento em comum com os outros conjuntos.

4 3 4
A melhor resposta!
2013-03-25T22:43:45-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.

Boa noite, Marivalda.

 

\text{Seja }x \in A \bigcap (B \bigcup C) \\\\ \Rightarrow x \in A\ e\ (x\in B\ ou\ x\in C) \\\\ \Rightarrow \text{Temos 2 possibilidades equivalentes:}\begin{cases} x\in A\ e\ x\in B\text{, ou}\\x\in A\ e\ x\in C\end{cases} \\\\ \Rightarrow (x \in A\ e\ x\in B)\ ou\ (x \in A\ e\ x\in C) \\\\ \Rightarrow (x \in A \bigcap B)\ ou\ (x \in A\bigcap C) \\\\ \Rightarrow x \in (A \bigcap B) \bigcup (A\bigcap C)

 

\text{Seja }x \in (A \bigcap B) \bigcup (A\bigcap C) \\\\ \Rightarrow (x \in A\ e\ x\in B)\ ou\ (x \in A\ e\ x\in C) \\\\ \Rightarrow \text{Temos 2 possibilidades equivalentes:}\\\\\begin{cases} se\ x\in A\ e\ x\in B\Rightarrow x \in A\ e\ x\in (B\bigcup C) \\se\ x\in A\ e\ x\in C\Rightarrow x \in A\ e\ x\in (B\bigcup C) \end{cases} \\\\ \Rightarrow \text{em ambas as possibilidades, temos como resultado: }\\x\in A\ e\ x\in (B\bigcup C) \\\\ \Rightarrow x \in A \bigcap (B \bigcup C)

 

\therefore \text{Como }\forall x \in A \bigcap (B \bigcup C) \Rightarrow x \in (A \bigcap B) \bigcup (A\bigcap C)\text{ e }\\\\ \forall x \in (A \bigcap B) \bigcup (A\bigcap C) \Rightarrow x \in A \bigcap (B \bigcup C), \\\\ \text{temos que: }A \bigcap (B \bigcup C)=(A \bigcap B) \bigcup (A\bigcap C)

7 4 7