1) Num período prolongado de seca, a variação da quantidade de água de certo reservatório é dada por q(t) = qo * 2^(-0,1t) , sendo qo a quantidade inicial de água no reservatório e q(t) a quantidade de água no reservatório após t meses. Em quantos meses a quantidade de água no reservatório se reduzirá à metade do que era no início?

1

Respostas

2014-02-16T01:18:58-03:00
Aqui é necessário encontrar um T de forma que q(T) = \frac{q_o}{2} = q_o.2^{-1}. Por um lado temos essa igualdade, por outro, aplicando diretamente T na função q(t), temos que q(T) = q_o.2^{-0,1T}. Agora é só igualar os q(T) pra encontrar o valor de T:

q_o.2^{-1} = q_o.2^{-0,1T} \Rightarrow 2^{-1} = 2^{-0,1T} \\ \\ \mathrm{Pot\^{e}ncias \ de \ mesma \ base, \ temos \ que \ igualar \ os \ expoentes} \\ \\ -1 = -0,1T \Rightarrow \boxed{\boxed{T = 10}}

Ou seja, demorará 10 meses até que a água do reservatório fique pela metade.
17 3 17