Respostas

A melhor resposta!
2013-06-11T21:57:58-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.

\lim_{x \to \ 9} \frac{\sqrt{x} - 3}{x^{2}-9x}\\ \\ obs \ \ x^{2}-9x=x(x-9)=x(\sqrt{x} - 3)(\sqrt{x} + 3)\\ \\ \lim_{x \to \ 9} \frac{\sqrt{x} - 3}{x(\sqrt{x} - 3)(\sqrt{x} + 3)}\\ \\ \lim_{x \to \ 9} \frac{1}{x(\sqrt{x} + 3)}\\ \\ \frac{1}{9(\sqrt{9} + 3)}\\ \\ \frac{1}{9(3 + 3)}\\ \\ \frac{1}{9(6)}\\ \\ \frac{1}{54}\\

1 5 1
  • Usuário do Brainly
2013-06-11T22:00:19-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.

\lim_{x \rightarrow 9} \frac{\sqrt{x} - 3}{x^2 - 9x} = \\\\\\ \lim_{x \rightarrow 9} \frac{\sqrt{x} - 3}{x^2 - 9x} \times \frac{\sqrt{x} + 3}{\sqrt{x} + 3} = \\\\\\ \lim_{x \rightarrow 9} \frac{x - 9}{x(x - 9)(\sqrt{x} + 3)} = \\\\\\ \lim_{x\rightarrow 9} \frac{1}{x(\sqrt{x} + 3)} = \\\\\\ \lim_{x \rightarrow 9} \frac{1}{9(3 + 3)} = \\\\ \boxed{\frac{1}{54}}

1 5 1