Respostas

2013-07-07T09:16:38-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.
Olá, Janacris1990.

A equação geral de uma circunferência de centro em (a,b) e raio r é dada por:

(x-a)^2+(y-b)^2=r^2 \Rightarrow\\\\x^2-2ax+a^2+y^2-2by+b^2=r^2 \Rightarrow\\\\x^2+y^2-2ax-2by+a^2+b^2-r^2=0

Por comparação com a equação dada no enunciado, vamos encontrar o centro (a,b) da circunferência deste exercício:

\\\\\begin{cases}-2a=-2 \Rightarrow a=1 \\-2b=-2 \Rightarrow b=1\end{cases} \Rightarrow\\\\\\x^2+y^2-2x-2y+1+1-r^2=0 \Rightarrow\\\\x^2+y^2-2x-2y+2-r^2=0\ \text{(i)}

Ocorre que P pertence ao INTERIOR da circunferência.
A equação do interior da circunferência é dada pela equação geral da circunferência, porém com o símbolo de \leq ("menor ou igual") no lugar do "=" (igual).

Assim a equação \text{(i)} fica:

x^2+y^2-2x-2y+2-r^2\leq0\ \text{(ii)}

Substituindo agora o ponto P(2,-3) na equação \text{(i)}, vamos encontrar os possíveis valores do raio r , de forma que o ponto P pertença ao interior da circunferência:

2^2+(-3)^2-2\cdot2-2\cdot(-3)+2-r^2\leq0 \Rightarrow\\\\r^2\geq 4+9-4+6+2=17 \Rightarrow r\geq\sqrt{17}\ \text{(iii)}

Voltando agora à equação \text{(ii)}, vamos obter o valor de k :

2-r^2=3k \Rightarrow r^2=2-3k \Rightarrow r=\sqrt{2-3k}

Aplicando a condição \text{(iii)}, temos:

r\geq\sqrt{17}\Rightarrow\sqrt{2-3k}\geq\sqrt{17}\Rightarrow2-3k\geq17\Rightarrow\\\\-3k\geq15 \ \times(-1) \Rightarrow3k\leq-15\Rightarrow k\leq\frac{-15}3\Rightarrow\\\\\boxed{k\leq-5}
1 5 1