Qual o dominio da função f(x) =\sqrt{\frac{2x-3}{x-5}}
Eu tento de todas as maneiras, mas dominio fica assim:
No denominador dentro da raiz fica x > 5 (certo com o gabarito)
Já o numerador da raiz fica X >= 3/2. E o correto é X < 3/2.
No gabarito consta: Dom F(x): (- \infty , -2] \cup [5, \infty+)
Onde estou dormindo que não consigo mudar o sinal ?

2

Respostas

2013-07-19T22:16:31-03:00
Olá Alan,eu creio que não seja necessário fazer a resolução,pois parece que você já sabe.Então,vou apenas comentar.

1º)Vemos 1 restrição para o numerador( 2x-3 >= 0) e outra para o denominador(x-5>0).
2º)Com essas restrições,temos que o correto seria x>= 3/2 e x>5.Mas aí temos 2 problemas:

1º que o gabarito da sua questão não bate com nosso resultado(o que é estranho),mas se fosse x<3/2, teríamos outra questão:
Como que o x seria menor que 3/2= 1.5 e ao mesmo tempo maior que 5?

Para atender a isso,bastaria ele ser maior do que 3/2(já que se fosse igual,não poderia ser maior que 5 também).

Minha opinião: você copiou certo,mas houve um erro no enunciado: possivelmente falta o sinal de - em alguns dos termos,o que faria grande diferença.
OU
Eu também não consegui entender.
Pois é...Até rolou Wolfram e bate com o gabarito. Eu entrei em tilt , pois mesmo fazendo a união de ambos, ficaria sem sentido.
2013-07-20T12:46:50-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.
2x-3 >=0  

2x >= 3 ====> x >=3/2

x-5 >0  ==> x > 5
                   3/2                        5                
          -                    +                    +           
          -                    -                    +           
           +                  -                     +

         D = { x E R/  x <= 3/2   e x > 5 }




                     
1 5 1