Respostas

2014-08-20T19:19:33-03:00
Y=ax^2 + bx + c
aonde o gráfico toca o y é o c, ou seja, c=-5.
se a distância entre os zeros(raízes da função) é 4, e o gráfico é dividido perfeitamente pelo eixo y(simetria) podemos concluir que as raízes são 2 e -2.
sabemos que o produto entre as raízes é c/a: p=c/a
assim 2*(-2)= -5/a
-4=-5/a
logo a=5/4
sabemos que o y do vértice( componente y do ponto de mínimo) é igual a -delta/4a:
Yv= -(b^2 - 4ac)/ 4a
-5= -(b^2 - 4*5/4*-5)/4*5/4
resolvendo dá b=0
logo a função é: y=5/4x^2 -5

para descobrir funções quadráticas devemos olhar o termo aonde o gráfico corta o eixo Y, olhar Xv e Yv, as raízes se tiver........depende da questão. Procure aproveitar os dados fornecidos