Questões de cálculo I envolvendo o teorema do confronto, segue em anexo as questões.

PS: Quero respostas concretas e bem explicadas (o passo a passo mesmo).

1
Comentário foi eliminado
Comentário foi eliminado
já chamei todos conhecidos kkk
Comentário foi eliminado
kkk blz

Respostas

A melhor resposta!
2013-08-20T00:20:20-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.
Olá, Dario.

35.\ \begin{cases}f(x) \leq M \\-f(x)\leq M \Rightarrow f(x) >= -M \end{cases}\\\\\\
\Rightarrow -M \leq f(x) \leq M \Rightarrow \\\\
\lim\limits_{x\to0}-Mx^2 \leq \lim\limits_{x\to0}x^2f(x) \leq \lim\limits_{x\to0}Mx^2 \Rightarrow \\\\
0 \leq \lim\limits_{x\to0}x^2f(x) \leq 0 \\\\
\text{Pelo teorema do "sandu\'iche":}\\\\
\lim\limits_{x\to0}x^2f(x)=0
_______________________________________________________________________

36.\ |f(x)| \leq M \Rightarrow -M \leq f(x) \leq M \Rightarrow \\\\ -Mg(x) \leq f(x)g(x) \leq Mg(x) \Rightarrow\\\\
\lim\limits_{x\to a}-Mg(x) \leq \lim\limits_{x\to a}f(x)g(x) \leq \lim\limits_{x\to a}Mg(x) \Rightarrow\\\\
M\lim\limits_{x\to a}-g(x) \leq \lim\limits_{x\to a}f(x)g(x) \leq M\lim\limits_{x\to a}g(x)
\\\\
\text{Como }\lim\limits_{x\to a}|g(x)|=0 \Rightarrow \begin{cases} \lim\limits_{x\to a}g(x)=0 \\ \lim\limits_{x\to a}-g(x)=0 \end{cases}:

M\cdot0 \leq \lim\limits_{x\to a}f(x)g(x) \leq M\cdot0 \Rightarrow\\\\
0 \leq \lim\limits_{x\to a}f(x)g(x) \leq 0\\\\
\text{Pelo teorema do "sandu\'iche":}\\\\
\lim\limits_{x\to a}f(x)g(x)=0
_______________________________________________________________________

37.\ |f(x)| \leq k|x-a| \Rightarrow\\\\
-k|x-a| \leq f(x) \leq k|x-a| \Rightarrow \\\\
\lim\limits_{x\to a}-k|x-a| \leq \lim\limits_{x\to a}f(x) \leq \lim\limits_{x\to a}k|x-a| \Rightarrow \\\\
0 \leq \lim\limits_{x\to a}f(x) \leq 0\\\\
\text{Pelo teorema do "sandu\'iche":}\\\\
\lim\limits_{x\to a}f(x)=0
1 5 1