Respostas

  • Usuário do Brainly
2013-08-31T19:59:40-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.
\lim_{h\rightarrow0}\frac{\frac{1}{(x+h)^2}-\frac{1}{x^2}}{h}=\\\\\\\lim_{h\rightarrow0}\frac{\left(\frac{1}{(x+h)}+\frac{1}{x}\right)\left(\frac{1}{(x+h)}-\frac{1}{x}\right)}{h}=\\\\\\\lim_{h\rightarrow0}\frac{\left(\frac{x+x+h}{x(x+h)}\right)\left(\frac{x-x-h}{x(x+h)}\right)}{h}=

\lim_{h\rightarrow0}\frac{\frac{2x+h}{x(x+h)}\cdot\left(\frac{-h}{x(x+h)}\right)}{h}=\\\\\\\lim_{h\rightarrow0}\frac{2x+h}{x(x+h)}\cdot\frac{-h}{x(x+h)}\div h=

\lim_{h\rightarrow0}\frac{2x+h}{x(x+h)}\cdot\frac{-h}{x(x+h)}\cdot\frac{1}{h}= \\\\\\\lim_{h\rightarrow0}\frac{2x+h}{x(x+h)}\cdot\frac{-1}{x(x+h)}=\\\\\\\lim_{h\rightarrow0}-\frac{2x+h}{x^2(x+h)^2}=\\\\\\-\frac{2x+0}{x^2(x+0)^2}=\\\\\\-\frac{2x}{x^4}=\\\\\\\boxed{-\frac{2}{x^3}}<span>

Ou, \boxed{-2x^{-3}}
Lferreira, ignore esse <span>. Desisto, ele não sai!