Respostas

2014-07-03T10:56:43-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.
Olá, Camilla.

Trata-se de uma PG cujo primeiro termo é 256 e a razão é \frac12.
O total caminhado até o instante t é dado pela soma desta PG até o instante t.
A fórmula da soma da PG até o instante t é dada por:

S_t=a_1\cdot \frac{q^t-1}{q-1},\begin{cases}a_t:\text{t-\'esimo termo}\\a_1:\text{primeiro termo}\\q:\text{raz\~ao}\end{cases}


Substituindo os valores do primeiro termo e da razão, temos:

S_t=256\cdot \frac{(\frac12)^t-1}{\frac12-1}=256\cdot \frac{(\frac12)^t-1}{-\frac12}=256\cdot \frac{1-(\frac12)^t}{\frac12}=512[1-(\frac12)^t]\Rightarrow\\\\
S_t=512-512\cdot(\frac12)^t\Rightarrow\,S_n=512-\frac{512}{2^t}

Para resolver as letras "a" e "b", bastas substituirmos os valores em cada letra na variável correspondente à soma, S_t, e obter o valor de t. Vamos lá.

a)\,S_t=480\Rightarrow512-\frac{512}{2^t}=480\Rightarrow512-480=\frac{512}{2^t}\Rightarrow\\\\32=\frac{512}{2^t}\Rightarrow2^t=\frac{512}{32}\Rightarrow 2^t=16\Rightarrow\boxed{t=4\text{ horas}}

b)\,S_t=600\Rightarrow512-\frac{512}{2^t}=600\Rightarrow512-600=\frac{512}{2^t}\Rightarrow\\\\-88=\frac{512}{2^t}\Rightarrow2^t=\frac{512}{-88}\Rightarrow 2^t<0\Rightarrow\boxed{\text{n\~ao existe resposta}}

De fato, se levarmos o tempo para o infinito, veremos que o máximo que a caminhada pode atingir são 512 m. 600 m, portanto, é impossível. Veja:

\lim\limits_{t\to+\infty}S_t=\lim\limits_{t\to+\infty}512-\frac{512}{2^t}=512-\lim\limits_{t\to+\infty}\frac{512}{2^t}=512-0=512
11 3 11