Respostas

A melhor resposta!
2013-04-21T19:18:01-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.

Olá, Rareirin.

 

Não sei como sua professora chegou neste resultado de 22, porque a resposta que obtive foi igual à sua.

 

Vejamos.

 

Primeiramente, para facilitar as referências, chamemos de H o ponto (2;-1,5).

 

Para obter a área entre as três curvas, calculemos primeiro a área do triângulo AEH e, deste valor, vamos subtrair a área entre as curvas  y = x^3\text{ e }y = -1,5  no intervalo [-1,14;2].

 

\text{\'Area do }\triangle AEH=\frac12[base]\times [altura]=\\\\ =\frac12[2-(-7,5)][8-(-1,5)]=\frac12 \cdot 9,5 \cdot 9,5=45,125\ (i)

 

 

A área entre as curvas  y = x^3\text{ e }y = -1,5  no intervalo [-1,14;2] é dada por:

 

\text{\'Area =}\int\limits^2_{-1,14} {x^3-(-1,5)} \, dx=\int\limits^2_{-1,14} {x^3} \, dx+\int\limits^2_{-1,14} 1,5 \, dx=\\\\\\ =\frac{x^4}4|^2_{-1,14}+1,5 \cdot [2-(-1,14)]=\frac{16}4-\frac{1,7}4+1,5 \cdot 3,14=8,285\ (ii)

 

 

\therefore \text{\'Area entre as tr\^es curvas}=(i)-(ii)=45,125-8,285 \Rightarrow \\\\ \boxed{\text{\'Area entre as tr\^es curvas}=36,84}

 

 

 

 

 

3 5 3