Respostas

2014-01-13T10:33:19-02:00
Sendo uma equação biquadrada o número de raízes é 4.
Alternativa D

2014-01-13T10:46:55-02:00
Alternativa "d", pois é uma equação de 4º grau (biquadrática ou quártica).

Fórmula geral: ax^4 + x² + c = 0,

A equação 5x^4 + x² - 3 = 0 é resolvida da seguinte forma:

Considerando x² = y, a equação fica assim:

5y² + y - 3 = 0

- b ± √b² - 4ac / 2a

- 1 ± √1² - 4. 5. (- 3) / 2. 5

- 1 ± √1 + 60 / 10

- 1 ± √61 / 10

- 1 ± 7,81 / 10 (≈ 7,81)

y' = - 1 - 7,81 / 10 = - 8,81 / 10 = - 0,881

y'' = - 1 + 7,81 / 10 = 6,81 / 10 = 0,681

As raízes de uma equação do 4º grau são obtidas da seguinte forma:

x² = y'
x² = y''

Sendo assim, basta fazer a substituição:

x' e x''= ± √ - 0,881 (detalhe: √ - 0,881 não Є ao conjunto dos números reais (IR))

x''' e x'''' = ± √0,681
1 5 1