Respostas

2014-01-14T22:05:55-02:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.
L(x)=-0,005x^2+13x-1250  \\
\\
L'(x)=-0,01x+13 =0  \\
\\
-0,01x=-13  \\
\\
x=\frac{-13}{-0,01} \\
\\
\boxed{x=1300 \ camisetas}
1 5 1
A melhor resposta!
2014-01-15T00:50:02-02:00
Olá Isabela,
Esta questão se trata de uma função do 2º grau.
L(x)=-0,005x^2+13x-1250
Onde,
a = -0,005\\\\b = 13\\\\c = -1250

Se o número de camisetas está representado por "x". Então para achar o valor máximo do lucro, é usar a fórmula do X do vértice.
Veja:

\boxed{Xv= \frac{-b}{2.a}}

Xv= \frac{-13}{2~.(-0,005)}\\ \\Xv= \frac{-13}{-0,01}\\\\\boxed{Xv=1300}

\boxed{\boxed{1300~~camisetas}}

1 5 1