Respostas

2014-02-03T13:57:43-02:00
Olá!

Para determinarmos a abertura de um ângulo, formado pela intersecção de uma corda e uma circunferência, temos a fórmula:

\theta=2\arccos(\frac{d}{r})\\
\\
\theta=2\arccos(\frac{2}{4})\\
\\
\theta=2\cdot60^\circ\\
\\
\theta=120^\circ

Já para determinarmos a altura da árvore temos que:

\tan(60^\circ)=\frac{x}{p}\to p\cong0,\!577x   (1)

e

\tan(30^\circ)=\frac{x}{p+30}\to x=0,\!577p+17,\!320   (2)

Substituindo (1) em (2), vem:

x=0,\!577\cdot0,\!577x+17,\!320\\
\\
x-0,\!333x=17,\!320\\
\\
x=\frac{17,\!320}{0,\!666}\\
\\
x\cong26

Ora, se x\cong26\;m, temos no primeiro triângulo que:

\tan(60^\circ)=\frac{26}{p}\\
\\
p\cong15\;m

Abraço,

Douglas Joziel.
1 1 1
Querido...a pergunta não diz respeito à altura, e sim a largura do rio. E se p8ssivel faz o desenho das duas questões para eu entender melhor. Faz o desenho em um papel e tira foto. Obg...
E a resposta da p17 é 15 m de largura....... faça novamente..
A questão já foi corrigida, perdoe-me o engano, e a imagem já foi enviada por mensagem "inbox". =D
Mt bom, parabéns!vc foi otimo!