Respostas

2013-06-03T16:27:36-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.

Olá, Myla.

 

Como os pontos A e B estão nos extremos de um diâmetro, então o diâmetro é igual à distância entre os pontos A e B:

 

A(4,-2)\text{ e } B(2,0)\\\\ d_{AB}=\sqrt{(x_A-x_B)^2+(y_A-y_B)^2}=\sqrt{2^2+(-2)^2}=\sqrt{4+4}=\\\\=\sqrt{2\cdot4}=2\sqrt2

 

Este é o valor do diâmetro. O raio da circunferência é a metade do diâmetro:

 

r=\sqrt2

 

Falta agora, apenas, determinarmos o centro da circunferência. Se A e B estão nos extremos de um diâmetro, então o centro tem como coordenadas os pontos médios entre as abscissas de A e B e as ordenadas de A e B:

 

x_{centro}=\frac{x_A+x_B}2=\frac{4 + 2}2=3\\\\ y_{centro}=\frac{y_A+y_B}2=\frac{-2 + 0}2=-1

 

A equação geral da circunferência com centro em  (x_{centro},y_{centro)  e raio  r  é:

 

(x-x_{centro})^2+(y-y_{centro})^2=r^2

 

A equação da circunferência procurada é, portanto:

 

(x-3)^2+[y-(-1)]^2=(\sqrt2)^2 \Rightarrow \\\\ \boxed{(x-3)^2+(y+1)^2=2}

 

 

 

 

 

5 4 5
2013-06-03T16:34:33-03:00

Extremos do diâmetro: A(4,-2)  B(2,0)

Ponto médio AB(centro circunferência): MAB=> Mx=4+2/2         My=-2+0/2    MAB(3,-1)= C

                                                                                      Mx=6/2=3         My= -1

Raio da circunferência= Distância CB

DCB=\sqrt{(Xc-Xb)^{2}+(Yc-Yb)^{2}}}

DBC=\sqrt{(3-2)^{2}+(-1+0)^{2}}

DBC=\sqrt{1^{2}+1^{2}}

DBC=\sqrt{2}

 

Equação da circunferência:(x-a)^{2}+(y-b)^{2}=(r)^{2}

                                                 (x-3)^{2}+(y+1)^{2}=(\sqrt{2})^{2}

                                                 x^{2}-6x+9+y^{2}+2y+1=2

                                                x^{2}+y^{2}-6x+2y+8=0

 

 

 

1 1 1