Respostas

  • Usuário do Brainly
2013-06-06T22:31:56-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.

\sin^2 x - \left ( 2 \cdot \sin x \cdot \cos x - \cos^2 x \right ) = 0 \\ \sin^2 x - 2 \cdot \sin x \cdot \cos x + \cos^2 x = 0 \\ \left (\sin^2 x + \cos^2 x \right ) - 2 \cdot \sin x \cdot \cos x = 0 \\ 1 - 2 \cdot \sin x \cdot \cos x = 0 \\ 2 \cdot \sin x \codt \cos x = 1 \\ \sin x = \frac{1}{2 \cdot \cos x}

 

 Substituindo em: sen² x + cos² x = 1

 

 Teremos:

 

\frac{1}{4 \cdot \cos^2 x} + \cos^2 x = 1 \\\\ 1 + 4 \cdot \cos^4 x = 4 \cdot \cos^2 x \\ 4 \cdot \cos^4 x - 4 \cdot \cos^2 x + 1 = 0 \\ (2 \cdot \cos^2 - 1)^2 = 0 \\ 2 \cdot \cos^2 x - 1 = 0 \\ \cos^2 x = \frac{1}{2} \\\\ \cos x = \pm \frac{\sqrt{2}}{2} \begin{cases} \cos x = \frac{\sqrt{2}}{2} \Rightarrow x = \frac{\pi}{4} \\ \cos x = - \frac{\sqrt{2}}{2} \Rightarrow x = \frac{3\pi}{4} \end{cases}

 

  Logo,

 

\boxed{\boxeed{S = \left \{ x \in \mathbb{R} / \frac{\pi }{4} + k\pi \right \}}}, k \in \mathbb{Z}

 

 Daí, alternativa b.