Respostas

A melhor resposta!
2013-06-21T12:05:50-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.

Olá, AgenteRJ.

 

A)\ \log_2(x\²+x)\geq 2 \Rightarrow 2\leq \log_2(x\²+x) \Rightarrow 2^2\leq x\²+x \Rightarrow\\\\ x^2+x-4 \geq 0\\\\ \text{\underline{Ra\'izes do polin\^onomio}:}\\\\ x=\frac{1\pm\sqrt{1+16}}{2}=\frac{1\pm\sqrt{17}}{2}

 

Como o polinômio  x^2+x-4  é uma parábola com a concavidade voltada para cima, então seus valores são positivos à esquerda e à direita das raízes, pois, entre as raízes, seus valores são negativos.

 

Portanto, os valores de x que satisfazem a inequação são:

 

x\leq\frac{1-\sqrt{17}}{2}\text{ ou }x\geq\frac{1+\sqrt{17}}{2}

 

Vamos verificar, agora, para quais valores de x não existe o logaritmo da inequação:

 

x^2+x\leq0 \Rightarrow x(x+1)\leq0\\\\ \underline{\text{An\'alise do sinal}}:\\\\ .....(-)...........|....(-)....0....(+)........\ x \\ .....(-).......-1...(+)....|.....(+)........\ (x+1) \\ .....(+).......-1...(-)....0....(+)........\ x(x+1)

 

No diagrama de sinais acima, podemos verificar que, para  -1\leq x\leq0,  não existe  \log x(x+1). Os valores de x que satisfazem a inequação não incluem este intervalo.

 

Portanto, a solução da inequação é:

 

\boxed{S=\{x\in\mathbb{R}|x\leq\frac{1-\sqrt{17}}{2}\text{ ou }x\geq\frac{1+\sqrt{17}}{2}\}}

 

_____________________________________________________________________

 

B)\ \log_5 (3x+1) \leq \log_5 (2x+3) \Rightarrow \log_5 (3x+1) - \log_5 (2x+3) \leq 0 \\\\ \Rightarrow \log_5 \frac{3x+1}{2x+3} \leq 0 \Rightarrow 0 \geq \log_5 \frac{3x+1}{2x+3} \Rightarrow \underbrace{5^0}_{=1}\geq\frac{3x+1}{2x+3} \Rightarrow \\\\ 2x+3 \geq 3x+1 \Rightarrow 3-1 \geq 3x-2x \Rightarrow 2 \geq x \Rightarrow x \leq 2

 

Vamos verificar, agora, para quais valores de x não existem os logaritmos da inequação:

 

\begin{cases} 3x+1\leq0 \Rightarrow x\leq-\frac13 \\\\ 2x+3\leq0 \Rightarrow x\leq-\frac32 \end{cases}

 

O intervalo  x\leq-\frac32  está contido no intervalo  x\leq-\frac13.

 

Portanto, a solução da inequação é:

 

\boxed{S=\{x\in\mathbb{R}|-\frac13\leq x\leq 2\}}

 

 

2 5 2