Respostas

2014-06-23T20:43:22-03:00
Achar as raízes das equações:
a)x²-x-20=0         a > 0  concvidade voltada para cima
a = 1
b = - 1
c = - 20

Δ = b² - 4ac   --------------agora só substituir os valores
Δ = (-1)² - 4(1)(-20)
Δ = + 1 + 80
Δ = 81 ---------------------------√81 = 9
se
Δ > 0 -------------- tem dois ZEROS reais diferentes

então  (BASKARA)

X = - b - + 
√Δ/2a

x' = - (-1) - 
√81/2(1)
x' = + 1 - 9 /2
x' = - 8/2
x' = - 4

x" = -(-1) + 
√81/2(1)
x" = + 1 + 9/2
x" = 10/2
x" = 5

logo, temos x - 4  ou  x = 5

b)
x²-3x-4=0
a = 1
b = - 3
c = - 4
Δ = b² - 4ac
Δ = (-3)² - 4(1)(-4)
Δ = 9 + 16
Δ = 25 -------------------------√25 = 5
se
Δ > 0 
então (Baskara)
x = - b - + √Δ/2a
x' = -(-3) - √25/2(1)
x' = + 3 - 5/2
x' = -2/2
x' = - 1

x" = -(-3) + √25/2(1)
x" = + 3 + 5/2
x" = 8/2
x" = 4

logo, temos  x = - 1  ou  x = 4



c)x²-8x+7=0
a = 1
b = - 8
c = 7
Δ = b² - 4ac
Δ = (-8)² - 4(1)(7)
Δ = + 64 - 28
Δ= 36--------------------------√36 = 6
se
Δ > 0 
então(BASKARA)
X = - b - + √Δ/2a

x' = -(-8) - √36/2(1)
x' = + 8 - 6/2
x' = 2/2
x" = 1

x" = -(-8) + √36/2(1)
x" = + 8 + 6/2
x" = 14/2
x" = 7

logo, temos   x = 1  ou  x = 7
1 5 1
2014-06-23T20:51:42-03:00
Utilizando as formula de bhaskara, podemos resolver essas equações do 2 grau conforme anexo.
1 4 1