Respostas

A melhor resposta!
2014-07-14T03:11:05-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.
a)
 x^{2} -8x +15 = 0

Encontrar o Delta (Δ)

Δ=b2−4ac
Δ=(−8)2−4*(1)*(15)
Δ=64−60
Δ=4

x = \frac{-b \pm \sqrt{\triangle}}{2*a}

x = \frac{-(-8) \pm \sqrt{4}}{2*1} \\  \\x =  \frac{8 \pm {2}}{2} \\  \\  x' = \frac{8 + {2}}{2}  \\  \\ x' = \frac{10}{2}   =>  x' = 5  \\  \\  x'' = \frac{8 - {2}}{2}  \\  \\ x'' = \frac{6}{2}   =>  x'' = 3

S= {5, -3}

b) 
 x^{2} +10x +25 = 0

Δ=b2−4ac
Δ=(10)2−4*(1)*(25)
Δ=100−100
Δ=0

x = \frac{-b \pm \sqrt{\triangle}}{2*a}

x = \frac{-10 \pm \sqrt{0}}{2*1} \\ \\x = \frac{-10 \pm {0}}{2} \\ \\ x' = \frac{-10 + {0}}{2} \\ \\ x' = \frac{-10}{2} => x' = -5 \\ \\ x'' = \frac{-10 - {0}}{2} \\ \\ x'' = \frac{-10}{2} => x'' = -5

S = {-5}

c)
3 x^{2}  +4x +1 = 0

Δ=b2−4ac
Δ=(4)2−4*(3)*(1)
Δ=16−12
Δ=4
x = \frac{-b \pm \sqrt{\triangle}}{2*a}

x = \frac{-4 \pm \sqrt{4}}{2*3} \\ \\x = \frac{-4 \pm {2}}{6} \\ \\ x' = \frac{-4 + {2}}{6} \\ \\ x' = \frac{-2}{6} => x' = - \frac{2}{6}  => x' =  -\frac{1}{3}   \\ \\ x'' = \frac{-4 - {2}}{6} \\ \\ x'' = \frac{-6}{6} => x'' = -1

S = (-
 \frac{1}{3} , -1)

d)
- x^{2}  +12x -20 = 0    vamos multiplicar por (-1)

x^{2} -12x +20 = 0

Δ=b2−4ac
Δ=(−12)2−4*(1)*(20)
Δ=144−80
Δ=64

x = \frac{-(-12) \pm \sqrt{64}}{2*1} \\ \\x = \frac{12 \pm {8}}{2} \\ \\ x' = \frac{12 + {8}}{2} \\ \\ x' = \frac{20}{2} => x' = 10 \\ \\ x'' = \frac{12 - {8}}{2} \\ \\ x'' = \frac{4}{2} => x'' = 2

S= {10,2}

e)
 x^{2}  -8x +12 = 0

Δ=b2−4ac
Δ=(−8)2−4*(1)*(12)
Δ=64−48
Δ=16

x = \frac{-(-8) \pm \sqrt{16}}{2*1} \\ \\x = \frac{8 \pm {4}}{2} \\ \\ x' = \frac{8 + {4}}{2} \\ \\ x' = \frac{12}{2} => x' = 6 \\ \\ x'' = \frac{8 - {4}}{2} \\ \\ x'' = \frac{4}{2} => x'' = 2

S ={6, 2}
2 5 2