Respostas

2013-08-05T20:22:26-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.
Olá.

\boxed{secx =  \frac{1}{cosx}}

\boxed{cos\ 45\º =  \frac{ \sqrt{2}}{2} }

sec\ 45\° =  \frac{1}{\frac{ \sqrt{2}}{2}}

\boxed{sec\ 45\° =  \sqrt{2}}

\boxed{1-  \sqrt{2} }
2013-08-05T20:32:36-03:00
Sabemos que:

\sec x=\dfrac{1}{\cos x}

Então:

\sec(45^{\circ})=\dfrac{1}{\cos(45^{\circ})}

\sec(45^{\circ})=\dfrac{1}{\frac{\sqrt{2}}{2}}

\sec(45^{\circ})=\dfrac{2}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\times\dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{2\sqrt{2}}{2}

\sec(45^{\circ})=\sqrt{2}

Agora, podemos calcular a expressão do enunciado:

1-\sec(45^{\circ})=1-\sqrt{2}