Sabe-se que o comportamento da quantidade de um determinado insumo, quando ministrado a uma muda, no instante t, é representado pela função Q(t) = 250.(0,6)t (elevado a t) , onde Q representa a quantidade (em mg) e t o tempo (em dias).
a) A quantidade inicial administrada.
b) A taxa de decaimento diária.
c) A quantidade de insumo presente 3 dias após a aplicação.
d) O tempo necessário para que seja completamente eliminado.

RESPOSTAS
A)A quantidade inicial seria quando o tempo for 0 (o marco zero, o tempo inicial) que no caso é 250 mg.
B) a taxa de decaimento diária é 0,6 que é 60% por dia.
C) seria 250*(0,6)³ que é 250*0,216 que é 54 mg.
d)Ele nunca vai ser totalmente eliminado pois como função exponencial o Y nunca vai ser 0 (no caso o Q(t) vai ser sempre Q Gostaria da explicação desses exercicios.

1
showww :)
valeuuuuuuuuuu

Respostas

2013-08-21T23:49:05-03:00
A) Q(t)= 250.(0,6)t
Q(0) = 250.(0,6)º
Q(0) = 250.1
Q (0) = 250 mg

B - Não tem cálculo o decaimento diário é 0,6

C - Q(t) = 250.(0,6)t
     Q(3) = 250.(0,6)³
     Q(3)= 250.0,216
     Q(3) = 54 mg



2 4 2
E como você chegou na resposta dos 0,216?
0,6 ao cubo ou seja: 0,6x 0,6 x 0,6 = 0,216
hum, muito obrigada, veleu mesmo.
Como eu faço para elaborar um relatório parcial com a resolução completa dos exercícios resolvidos? Como é esse relatório?
O tempo necessário para que seja completamente eliminado.