Na disciplina de Matemática de certo curso, o professor aplicou 3 provas com pesos diferentes. Para melhor organizar as notas, ele construiu um quadro contendo a nota dos alunos em cada prova e sua média ponderada. No quadro estão destacadas as notas dos 3 alunos que obtiveram o melhor desempenho.
De acordo com o quadro, determine o peso de cada prova, sabendo que a soma deles é 10.

Obs: Preciso da resposta usando o método de escalonamento.

Resposta final:
1ª prova:5
2ª prova:2
3ª prova:3

1

Respostas

A melhor resposta!
  • Usuário do Brainly
2013-08-21T22:30:23-03:00

Esta é uma Resposta Verificada

×
As Respostas verificadas contém informações confiáveis, garantidas por um time de especialistas escolhido a dedo. O Brainly tem milhões de respostas de alta qualidade, todas cuidadosamente moderadas pela nossa comunidade de membros, e respostas verificadas são as melhores de todas.
 Olá Liened,
boa noite!

 Inicialmente, devemos entender como é calculada a média ponderada.

 Consideremos os pesos:
1ª prova: peso x
2ª prova: peso y
3ª prova: peso z

 Calculemos a nota da Natália da seguinte forma:

\frac{9,7\cdot x+8,4\cdot y+8,9\cdot z}{x+y+z}=9,2\\\\\frac{9,7\cdot x+8,4\cdot y+8,9\cdot z}{10}=9,2\\\\9,7\cdot x+8,4\cdot y+8,9\cdot z=92\;\;\times(10\\\\\boxed{97x+84y+89z=920}


 Calculemos a nota do Eduardo:

\frac{9,5\cdot x+8,3\cdot y+8,3\cdot z}{x+y+z}=8,9\\\\\frac{9,5\cdot x+8,3\cdot y+8,3\cdot z}{10}=8,9\\\\9,5\cdot x+8,3\cdot y+8,3\cdot z=89\;\;\times(10\\\\\boxed{95x+83y+83z=890}


 Nota da Vanessa:

\frac{8,4\cdot x+9,4\cdot y+8,4\cdot z}{x+y+z}=8,6\\\\\frac{8,4\cdot x+9,4\cdot y+8,4\cdot z}{10}=8,6\\\\8,4\cdot x+9,4\cdot y+8,4\cdot z=86\;\;\times(10\\\\\boxed{84x+94y+84z=860}

 Daí, o sistema abaixo:

\begin{cases} 97x+84y+89z=920\\95x+83y+83z=890\\84x+94y+84z=860\end{cases}


 Escalonemos,...

\begin{bmatrix}97&84&89&|&920\\95&83&83&|&890\\84&94&84&|&860\end{bmatrix}=\\L_2\leftarrow95L_1-97L_2\\L_3\leftarrow84L_1-97L_3\\\\\\\begin{bmatrix}97&84&89&|&920\\(95\cdot97-97\cdot95)&(95\cdot84-97\cdot83)&(95\cdot89-97\cdot83)&|&(95\cdot920-97\cdot890)\\(84\cdot97-97\cdot84)&(84\cdot84-97\cdot94 )&(84\cdot89-97\cdot84)&|&(84\cdot920-97\cdot860)\end{bmatrix}=


\begin{bmatrix}97&84&89&|&920\\0&-71&404&|&1070\\0&-2062&-672&|&-6140\end{bmatrix}=\\L_3\leftarrow2062L_1-71L_3

\begin{bmatrix}97&84&89&|&920\\0&-71&404&|&1070\\0&(-2062\cdot71+71\cdot2062)&(2062\cdot404+71\cdot672)&|&(2062\cdot1070+71\cdot6140)\end{bmatrix}=

\begin{bmatrix}97&84&89&|&920\\0&-71&404&|&1070\\0&0&880760&|&2642280\end{bmatrix}=


 Para encontrarmos o valor de "z", ou seja, o peso da 3ª prova 'pegamos' a última linha, daí:

880760z=2642280\\\\\boxed{\boxed{z=3}}


 Para encontrar os outros valores, presumo que saiba como fazê-lo!!

 Espero ter ajudado! E, Ufa!!


18 4 18